
www.manaraa.com

Towards Secure Multi-Keyword Top-k Retrieval over

Encrypted Cloud Data∗

Jiadi Yu, Peng Lu, Yanmin Zhu, Guangtao Xue and Minglu Li
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Shanghai 200240, P.R. China

Abstract

Cloud computing has emerging as a promising pattern for data outsourcing and high-

quality data services. However, concerns of sensitive information on cloud potentially

causes privacy problems. Data encryption protects data security to some extent, but

at the cost of compromised efficiency. Searchable symmetric encryption (SSE) allows

retrieval of encrypted data over cloud. In this paper, we focus on addressing data privacy

issues using searchable symmetric encryption (SSE). For the first time, we formulate the

privacy issue from the aspect of similarity relevance and scheme robustness. We observe

that server-side ranking based on order-preserving encryption (OPE) inevitably leaks data

privacy. To eliminate the leakage, we propose a two-round searchable encryption (TRSE)

scheme that supports top-k multi-keyword retrieval. In TRSE, we employ a vector space

model and homomorphic encryption. The vector space model helps to provide sufficient

search accuracy, and the homomorphic encryption enables users to involve in the ranking

while the majority of computing work is done on the server side by operations only on

ciphertext. As a result, information leakage can be eliminated and data security is ensured.

Thorough security and performance analysis show that the proposed scheme guarantees

high security and practical efficiency.

Index Terms: Cloud, data privacy, ranking, similarity relevance, homomorphic encryption,

vector space model

∗This work was supported in part by Shanghai Pu Jiang Talents Program (10PJ1405800), NSFC (No.
61170238, 60903190, 61027009). Emails: {jiadiyu, perlony, yzhu, gt xue, mlli}@sjtu.edu.cn.

1

IEEE TRANSACTIONSN ON DEPENDABLE AND SECURE COMPUTING VOL:10 NO:4 YEAR 2013

www.manaraa.com

1 Introduction

Cloud computing [1], a critical pattern for advanced data service, has became a necessary

feasibility for data users to outsource data. Controversies on privacy, however, have been

incessantly presented as outsourcing of sensitive information including emails, health history

and personal photos is explosively expanding. Reports of data loss and privacy breaches in

cloud computing systems appear from time to time [2][3].

The main threat on data privacy roots in the cloud itself [6]. When users outsource their

private data onto the cloud, the cloud service providers are able to control and monitor the data

and the communication between users and the cloud at will, lawfully or unlawfully,. Instances

such as the secret NSA program, working with AT&T and Verizon, which recorded over 10

million phone calls between American citizens, cause uncertainty among privacy advocates,

and the greater powers it gives to telecommunication companies to monitor user activity [7].

To ensure privacy, users usually encrypt the data before outsourcing it onto cloud, which brings

great challenges to effective data utilization. However, even if the encrypted data utilization

is possible, users still need to communicate with the cloud and allow the cloud operate on the

encrypted data, which potentially causes leakage of sensitive information.

Furthermore, in cloud computing, data owners may share their outsourced data with a

number of users, who might want to only retrieve the data files they are interested in. One of

the most popular ways to do so is through keyword-based retrieval. Keyword-based retrieval is

a typical data service and widely applied in plaintext scenarios, in which users retrieve relevant

files in a file set based on keywords. However, it turns out to be a difficult task in ciphertext

scenario due to limited operations on encrypted data. Besides, in order to improve feasibility

and save on the expense in the cloud paradigm, it is preferred to get the retrieval result with

the most relevant files that match users’ interest instead of all the files, which indicates that

the files should be ranked in the order of relevance by users’ interest and only the files with the

highest relevances are sent back to users.

A series of searchable symmetric encryption schemes have been proposed to enable search on

ciphertext. Traditional SSE schemes [22][23] enable users to securely retrieve the ciphertext, but

these schemes support only boolean keyword search, i.e., whether a keyword exists in a file or

not, without considering the difference of relevance with the queried keyword of these files in the

2

www.manaraa.com

result. To improve security without sacrificing efficiency, schemes presented in [9][10][24] show

that they support top-k single keyword retrieval under various scenarios. Authors of [25][26]

made attempts to solve the problem of top-k multi-keyword over encrypted cloud data. These

schemes, however, suffer from two problems - boolean representation and how to strike a balance

between security and efficiency. In the former, files are ranked only by the number of retrieved

keywords, which impairs search accuracy. In the latter, security is implicitly compromised to

tradeoff for efficiency, which is particularly undesirable in security-oriented applications.

Preventing the cloud from involving in ranking and entrusting all the work to the user is a

natural way to avoid information leakage. However, the limited computational power on the

user side and the high computational overhead precludes information security. The issue of

secure multi-keyword top-k retrieval over encrypted cloud data thus is: how to make the cloud

do more work during the process of retrieval without information leakage.

In this paper, we introduce the concepts of similarity relevance and scheme robustness to

formulate the privacy issue in searchable encryption schemes, and then solve the insecurity

problem by proposing a two-round searchable encryption (TRSE) scheme. Novel technologies

in the cryptography community and information retrieval community are employed, including

homomorphic encryption and vector space model. In the proposed scheme, the majority of

computing work is done on the cloud while the user takes part in ranking, which guarantees top-

k multi-keyword retrieval over encrypted cloud data with high security and practical efficiency.

Our contributions can be summarized as follows:

1) We propose the concepts of similarity relevance and scheme robustness. We thus perform

the first attempt to formulate the privacy issue in searchable encryption, and we show server-

side ranking based on order-preserving encryption (OPE) inevitably violates data privacy.

2) We propose a two-round searchable encryption (TRSE) scheme, which fulfills the secure

multi-keyword top-k retrieval over encrypted cloud data. Specifically, for the first time we

employ relevance score to support multi-keyword top-k retrieval.

3) Thorough analysis on security demonstrates the proposed scheme guarantees high data

privacy. Furthermore, performance analysis and experimental results show that our scheme is

efficient for practical utilization.

The rest of this paper is organized as follows. We provide scenario and related background

3

www.manaraa.com

Figure 1: Scenario of retrieval of encrypted cloud data.

in Section 2, and then we give the security definitions and problems with existing schemes

in Section 3. In Section 4, we present the detailed description of the proposed searchable

encryption scheme. In Section 5 we discuss two main issues of our scheme. Section 6 and 7

give the security analysis and performance analysis, respectively. Related work are reviewed in

Section 8. Section 9 concludes this paper.

2 Preliminaries

2.1 Scenario

We consider a cloud computing system hosting data service, as illustrated in Figure 1, in which

three different entities are involved: Cloud server, Data owner and Data user.

The cloud server hosts third-party data storage and retrieve services. Since data may contain

sensitive information, the cloud servers cannot be fully entrusted in protecting data. For this

reason, outsourced files must be encrypted. Any kind of information leakage that would affect

data privacy are regarded as unacceptable.

The data owner has a collection of n files C = {f1, f2, ..., fn} to outsource onto the cloud

server in encrypted form and expects the cloud server to provide keyword retrieval service to

data owner himself or other authorized users. To achieve this, the data owner needs to build

a searchable index I from a collection of l keywords W = {w1, w2, ..., wl} extracted out of C,

and then outsources both the encrypted index I ′ and encrypted files onto the cloud server.

The data user is authorized to process multi-keyword retrieval over the outsourced data.

The computing power on user side is limited, which means that operations on user side should

4

www.manaraa.com

be simplified. The authorized data user at first generates a query REQ = {(w′
1, w

′
2, ..., w

′
s)|w′

i ∈
W, 1 ≤ i ≤ s ≤ l}. For privacy consideration, which keywords the data user has searched must

be concealed. Thus the data user encrypts the query and sends it to the cloud server that

returns the relevant files to the data user. Afterwards, the data user can decrypt and make use

of the files.

2.2 Relevance scoring

Some of the multi-keyword searchable symmetric encryption schemes support only boolean

queries, i.e., a file either matches or does not match a query. Considering the large number

of data users and documents in the cloud, it is necessary to allow multi-keyword in the search

query and return documents in the order of their relevancy with the queried keywords.

Scoring is a natural way to weight the relevance. Based on the relevance score, files can

then be ranked in either ascendingly or descendingly. Several models have been proposed to

score and rank files in information retrieval (IR) community. Amongst these schemes, we adopt

the most widely used one tf-idf weighting, which involves two attributes-term frequency and

inverse document frequency. The tf-idf weighting involves two attributes: term frequency and

inverse document frequency. Term frequency (tft,f) denotes the number of occurrences of term

t in file f . Document frequency (dft) refers to the number of files that contains term t, and

the inverse document frequency (idft) is defined as: idft = log N
dft
, where N denotes the total

number of files. Then the tf-idf weighting scheme assigns to term t a weight in file f given

by tf -idft,f = tft,f × idft. By introducing the IDF factor, the weights of terms that occur

very frequently in the collection are diminished and the weights of terms that occur rarely are

increased.

2.3 Vector space model

While tf -idf depicts the weight of a single keyword on a file, we employ vector space model to

score a file on multi-keyword. The vector space model [19] is an algebraic model for representing

a file as a vector. Each dimension of the vector corresponds to a separate term, i.e., if a term

occurs in the file, its value in the vector is non-zero, otherwise is zero. The vector space

model supports multi-term and non-binary presentation. Moreover, it allows computing a

5

www.manaraa.com

continuous degree of similarity between queries and files, and then ranking files according to

their relevance. It meets our needs of top-k retrieval. A query is also represented as a vector

�q, while each dimension of the vector is assigned with 0 or 1 according to whether this term is

queried. The score of file f on query q (scoref,q) is deduced by the inner product of the two

vectors: scoref,q = �vf · �q. Given the scores, files can be ranked in order and therefore the most

relevant files can be found.

3 Problem statement

The cloud server in our work is considered as “honest-but-curious”[9], a model extensively used

in SSE and characterized by that the cloud server will honestly follow the designed protocol

but is curious to analyze the hosted data and the received queries to learn extra information.

3.1 Statistic leakage

Although all data files, indices and requests are in encrypted form before being outsourced onto

cloud, the cloud server can still obtain additional information through statistical analysis. We

denote the possible information leakage with statistic leakage. There are two possible statistic

leakages, including term distribution and inter distribution. The term distribution of term t

is t’s frequency distribution of scores on each file i(i ∈ C). The inter distribution of file f is

file f ’s frequency distribution of scores of each term j(j ∈ f). Term distribution and inter

distribution are specific [10]. They can be deduced either directly from ciphertext or indirectly

via statistical analysis over access and search pattern [8]. Here access pattern refers to which

keywords and the corresponding files have been retrieved during each search request, and search

pattern refers to whether the keywords retrieved between two request are the same.

Based on our observation, distribution information implies similarity relationship among

terms or files. On one hand, terms with similar term distribution always have simultaneous

occurrence. For instance, obviously, the term “states” are very likely to co-occur with “united”

in an official paperwork from the White House, and their term distribution, not surprisingly,

are very same in a series of such a kind of paperwork. Given these paperwork are encrypted

but term distribution are not concealed, so once an adversary somehow cracks out the plaintext

6

www.manaraa.com

Table 1: Similarity relevance with “resources” before and after OPM

term lent κ len′
t κ′

directorate 264 0.023 264 0.023

education 4826 0.544 3573 0.403

human 7648 0.885 7647 0.885

provide 1014 0.098 1014 0.098

sciences 2480 0.226 2480 0.226

of “united”, he can reasonably guess the term that shares a similar term distribution with

“united” may be “states”. On the other hand, files with similar inter distribution are always

the same category, e.g., two medical records from a dental surely are the same category, and

they are very likely to share a similar inter distribution (such as the titles of each entries are

the same). Therefore, this specificity should be hidden from an untrusted cloud server.

3.2 κ-similarity relevance

In order to avoid information leakage in server-side ranking schemes, a series of techniques [9][10]

have been employed to flatten or transfer the distribution of relevance scores. These approaches,

however, only cover the distribution of individual term or file, ignoring the relevance between

them and the violation of data privacy that arouses thereafter. In order to formulate this

problem, we propose the concept of κ-similarity relevance.

Definition 3.1. The file sequence (FS) of term i(i ∈ W), denoted by �tsi = {d′

1d
′

2...d
′

k}, is

a sequence of files induced by sorting the term vector �tvi = {d1d2...dk} with scores in non-

decreasing order.

Definition 3.2. The term sequence (TS) of file j(j ∈ C), denoted by �fsj = {t′1t′2...t′l}, is a

sequence of terms induced by sorting the file vector �fvj = {t1t2...tl} with scores in non-decreasing

order.

Definition 3.3. Given two sequences (FS or TS) �v1 and �v2, their longest common subsequence

(LCS) �lcsv1v2, we call �v1 and �v2 are relevant by similarity relevance of κv1v2 if κv1v2 ≥ κ0, where

κv1v2 =
2|| �lcsv1v2 ||

||�v1||+||�v2||
and ||�v|| denotes the dimensionality of vector �v.

7

www.manaraa.com

25 50 75 100 125 150 175 200

term id

0.5

0.6

0.7

0.8

0.9

1.0

1.1

r
a
t
io

Figure 2: Ratio of 218 terms with “resources”.

Since LCS ⊆ FS, i.e., ||LCS|| � ||FS||, thus κ ≤ 1. The similarity relevance denotes how

often two terms co-occur with each other in files, e.g., κij = 0.5 means term i occurs in half

number of the files which term j occurs. The threshold κ0 (κ0 ∈ (0, 1)) is set to narrow down

the scope. Two terms are regarded as relevant if κ ≥ κ0 or irrelevant otherwise. The divisor is

introduced to avoid terms with longer file sequences to get higher κ value. Due to the similarity

between TS and FS, we only discuss FS. Note that the IDF value is constant for one term in

one file set, so it will not affect the order of files in FS if we omit it here for simplicity.

We have researched in a files set of 45800 files from NSF Research Awards Abstracts 1990-

2003 [15]. According to the statistic data, in which terms are sorted in non-decreasing order by

their term frequencies (the same order as by tf -idf), e.g., the 160th term is “resources”, whose

FS length is 8703, i.e., “resources” appears in 8703 files.

Let lent and len′
t denote the length of longest common subsequence of term i with term “re-

sources” before and after one-to-many order-preserving mapping respectively, and ratiot =
len′

t

lent
.

Since different TF values are mapped to non-overlapping intervals after order-preserving map-

ping, the order of files in file sequence is almost undisturbed. Therefore, the longest common

sequence is barely affected. For example, the term “human” is the most relevant term with “re-

sources” in the five terms by κ = 0.885 before one-to-many order-preserving mapping (OPM),

as shown in Table 1. After OPM, however, lent of the five terms remain almost the same, i.e.,

lent ≈ len′
t, and the corresponding similarity relevance almost maintained. The term “human”

still is the most relevant term with “resources”.

In a larger range of 218 terms, which are randomly chosen from the top 1000 terms with

the highest term frequencies, as shown in Figure 2, 98% of their ratio are greater than 0.9,

8

www.manaraa.com

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

10

20

30

40

50

60

n
u
m

b
e
r

o
f

te
rm

s

before OPM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
similarity relevance with "resources"

0
10
20
30
40
50
60
70

n
u
m

b
e
r

o
f

te
rm

s

after OPM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00
5

10
15
20
25
30
35
40

n
u
m

b
e
r

o
f

te
rm

s

before OPM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
similarity relevance with "data"

0
5

10
15
20
25
30
35
40

n
u
m

b
e
r

o
f

te
rm

s

after OPM

(a) (b)

Figure 3: Distribution of similarity relevance of (a) 218 terms with “resources” before and

after OPM in the NSF file set. (b) 142 terms with “data” before and after OPM in the 20

Newsgroups data set.

i.e., the lengths of their longest common subsequences remain at least 90% after OPM. Figure

3(a) illustrates the similarity relevance of term “resources” with the 218 terms, from which

we can see the distribution of similarity almost changeless. There still are two terms that can

be considered relevant with “resources” after OPM even set κ0 as high as 0.8. Additionally,

we also studied the 20 Newsgroups data set [16], which consists of 20000 messages taken from

20 Usenet newsgroups. As shown in Figure 3(b), the distribution of similarity relevance of

142 terms with “data” remains almost constant before and after OPM, which agrees with the

observation on the NSF file set. More essentially, the order of terms is changeless, i.e., which

term is more relevant with a term than other terms do has not been concealed.

Moreover, although the expected value of ratio can be reduced by properly choosing mapping

function, the relative order of them still remains as a result of the order-preserving property.

Therefore, the fact that some terms are more relevant than other terms is still exposed after

order-preserving one-to-many mapping.

3.3 Scheme robustness

Given the similarity relevance, which implies terms’ co-occurrence, data privacy may be poten-

tially threatened. According to [17], co-occurrence of words, which means how often a word

co-occur with another word in a text, is one of the most basic corpus linguistics statistic, and it

is measurable through various means including but not limited to pointwise mutual information

and the t-score.

9

www.manaraa.com

This kind of plaintext statistic may violate the privacy of ciphertext if it is not properly

handled in encryption scheme design. Consider two terms t1 and t2, given they co-occur with

each other most of the time in C, and then it can be easily deduced that κt1t2 ≈ 1. Conversely,

given κt1t2 > κ0, t1 and t2 are likely to appear simultaneously by probability of κt1t2 . According

to this simultaneous occurrence, if t1 is known while t2 is unknown (this is possible due to

background information leakage may occur in practical situations, typical examples are available

in [4] [5]), then t2 can be speculated with probability of pt1t2 by applying bigram frequency

attack. For example, according to [12], bigram ‘of the’ occurs much more frequent than any

other bigrams based on millions of books from the year 1520 to 2008, i.e., once ‘of’ is known, the

word that next to ‘of’ most likely is ‘the’. The total probability to crack t2 is ptotal = κt1t2 ·pt1t2 ,
e.g., assume κt1t2 = 0.9 and pt1t2 = 0.6, then ptotal = 0.9× 0.6 = 0.54, which means that once a

part of plaintext is known, the rest of ciphertext may be cracked at a probability much greater

than that of brute-force (typically exponential in ρ, where ρ is the bit length of ciphertext [11]).

To formulate this problem, we introduce the concept of scheme robustness.

Definition 3.4. Let Γ denotes the output collection of a searchable encryption scheme, ∀ζ ⊆ Γ,

∀τ ⊆ Γ, and ζ ∩ τ = ∅. Scheme robustness is denoted by � = min{ p(ζ)
p(ζ|τ)

}, where p(ζ |τ) denotes
the crack probability of ζ on condition that τ is known.

It is obvious that � ≤ 1, and the higher � implies the higher scheme robustness. Variants of

order-preserving mapping have been employed to help shelter the real score distribution from

the cloud in existing searchable symmetric encryption schemes. It seems that the transferred

distribution may be distinct from what it used to be. But it is actually not, due to that, by

our definition, the similarity relevance is still a result of the order preserving property in the

presence of one-to-many mapping.

Without losing any generality, suppose that the overall attack complexity of brute-force a

passage of ciphertext with bit-length of ρ is Tρ ,e.g., 2ρ, the crack probability is ptotal =
1
Tρ
.

Assume that each bit is independent, the crack probability of each bit is pbit = ρ
√
ptotal = ρ

√
1
Tρ
.

Once item i is brute-forced out, suppose that a k bit item j is similarity relevant with i by

κij > κ0 and predictable by probability of pij , and then item j’s crack probability raises to

κij · pij , and �ij = Tρ
−

k
ρ

κij ·pij
� 1, which means the scheme robustness is low and thus more

vulnerable to attack.

On the basis of the above discussion, the similarity relevance is specific for terms and

10

www.manaraa.com

thus should be properly hidden from the cloud server. However, order-preserving symmetric

encryption can not conceal the similarity relevance, so the scheme robustness of order-preserving

symmetric encryption scheme is low. Furthermore, it requires the ciphertext to be order-

preserving to support server-side ranking, so server-side ranking is insecure for inevitably leaking

sensitive information. For this reason, ranking can not be entirely left to the cloud server.

4 TRSE design

Existing SSE schemes employ server-side ranking based on order-preserving encryption to im-

prove the efficiency of retrieval over encrypted cloud data. However, server-side ranking based

on order-preserving encryption violates the privacy of sensitive information, which is considered

uncompromisable in the security-oriented third-party cloud computing scenario, i.e., security

can not be trade off for efficiency. To achieve data privacy, ranking has to be left to the user

side. Traditional user-side schemes, however, load heavy computational burden and high com-

munication overhead on the user side, due to the interaction between the server and the user

including searchable index return and ranking score calculation. Thus, the user side ranking

schemes are challenged by practical use. A more server-siding scheme might be a better solution

to privacy issues.

We propose a new searchable encryption scheme, in which novel technologies in cryptography

community and IR community are employed, including homomorphic encryption and vector

space model. In the proposed scheme, the data owner encrypts the searchable index with

homomorphic encryption. When the cloud server receives query consisting of multi-keyword, it

computes the scores from the encrypted index stored on cloud, and then returns the encrypted

scores of files to the data user. Next, the data user decrypts the scores and picks out the top-k

highest-scoring files’ identifers to request to the cloud server. The retrieval takes a two-round

communication between the cloud server and the data user. We thus name the scheme as two-

round searchable encryption (TRSE) scheme, in which ranking is done at the user side while

scoring calculation is done at the server side.

11

www.manaraa.com

4.1 Practical homomorphic encryption scheme

To alleviate the computational burden on user side, computing work should be at the server side,

so we need an encryption scheme to guarantee the operability and security at the same time on

server side. Homomorphic encryption allows specific types of computations to be carried out on

the corresponding ciphertext. The result is the ciphertext of the result of the same operations

performed on the plaintext. That is, homomorphic encryption allows computation of ciphertext

without knowing anything about the plaintext to get the correct encrypted result. Although it

has such a fine property, original fully homomorphic encryption scheme, which employs ideal

lattices over a polynomial ring [18], is too complicated and inefficient for practical utilization.

Fortunately, as a result of employing the vector space model to top-k retrieval, only addition

and multiplication operations over integers are needed to compute the relevance scores from

the encrypted searchable index. Therefore, we can reduce the original homomorphism in a full

form to a simplified form that only supports integer operations, which allows more efficiency

than the full form does.

In the fully homomorphic encryption over the integers (FHEI) scheme [11], the approximate

integer greatest common divisor (GCD) is used to provide sufficient security, i.e., given a list

of integers � = {i1, i2, ..., in} which are approximate multiples of a hidden integer j, to find

the hidden integer j. The approximate GCD problem has been proven hard by Howgrave-

Graham [14]. Let m and c denote the plaintext and ciphertext of the integer respectively. Our

encryption scheme can be expressed as the following formulation: c = pq + 2r + m, where p

denotes the secret key, q denotes the multiple parameter, and r denotes the noise to achieve

proximity against brute-force attacks. The public key is pq + r.

However, as the scores of items in file vector of searchable index Ip is multi-bit, the total size

of Ic and the computed results will be very large due to the FHEI scheme encrypts one bit to

||p||+ ||q|| bit (here||p|| refers to bit length of p, i.e., ||p|| = log p�). To downsize the ciphertext

and thus mitigate the communication overhead, we modify the original FHEI scheme more

flexible to meet our needs: c = pq + xr +m, where x = 22||m||, p � r and r � x to ensure the

correctness of the decryption. Since the size of the result will be doubled after multiplication,

the noise parameter x is thus required to be at least 22||m||. Therefore, multi-bit is considered

as a unit for encryption, and the size of ciphertext is significantly reduced, i.e., the size of

ciphertext can be reduced down to 1
||m||

of that in original FHEI scheme. For example, assume

12

www.manaraa.com

the value of scores is up to 210, then the size of ciphertext will be 10(||p||+ ||q||) for encryption
of each bit of m if applying original FHEI scheme, while only (||p|| + ||q||) in the modified

FHEI scheme. The modified FHEI scheme guarantees homomorphism property according to

the following theorem.

Theorem 4.1. The modified FHEI scheme is homomorphic for addition and multiplication.

Proof. Given two plaintext m1, m2 and their corresponding ciphertext c1, c2 by employing the

modified FHEI scheme, where ci = pqi + xri +mi(i = 1, 2). Then we have

c1 + c2 = (pq1 + xr1 +m1) + (pq2 + xr2 +m2)

= p(q1 + q2) + x(r1 + r2) + (m1 +m2)) (1)

c1 · c2 = (pq1 + xr1 +m1) · (pq2 + xr2 +m2)

= p2q1q2 + px(q1r2 + q2r1) + p(q1m2 + q2m1)

+x2r1r2 + x(r1m2 + r2m1) +m1m2. (2)

Note that p � r, r � x, thus from equation(1)(2) we can deduce that

((c1 + c2) mod p) mod x = m1 +m2

((c1 · c2) mod p) mod x = m1 ·m2.

Hence, the theorem 4.1 is true.

On the basis of homomorphism property, the encryption scheme can be described as four

stages: KeyGen, Encrypt, Evaluate and Decrypt.

• KeyGen(λ): The secret key SK is an odd η-bit number randomly selected from the

interval [2η−1, 2η). The set of public keys PK = {k0, k1, ..., kτ} ⊆ {pq+r|q ∈ [0, 2γ/p), r ∈
2Z ∩ (−2ρ, 2ρ)} and ρ denotes the bit length of r. The noise factor x is randomly selected

from the interval (22μ, 22(μ+1)], where μ denotes the bit length of atomic plaintext. Note

that the secret key is used for encryption and the public keys are used for decryption,

which are different from the concepts of keys in public-key cryptography.

• Encrypt(PK,m): Randomly choose a subset R ⊆ {1, 2, ..., τ} and an integer r′ ∈
(−22ρ, 22ρ), and then return ciphertext c = m+ xr′ +

∑
i∈R ki.

13

www.manaraa.com

• Evaluate(c1, c2, ..., ct): Apply the binary addition and multiplication gates to the t ci-

phertext ci, perform all necessary operations, and then return the resulting integer χ.

• Decrypt(p, χ): Output m′ = (χ mod p) mod x

Here ρ = λ, η = O(λ2), γ = O(λ5). The modified FHEI scheme is relatively time-consuming,

so we only employ it to encrypt the searchable index I, while the file set C can be encrypted with

other symmetric encryption scheme. Note that the Evaluate stage sets no limit to how many

addition or multiplication operations can be excuted without recryption. In fact, the ciphertext

of an integer, which is another integer, can be applied as many evaluations as needed.

4.2 Framework of TRSE

The framework of TRSE includes four algorithms: Setup, IndexBuild, TrapdoorGen, S-

coreCalculate and Rank.

• Setup(λ): The data owner generates the secret key and public keys for the homomorphic

encryption scheme. The security parameter λ is taken as the input, the output are a

secret key SK and a public key set PK.

• IndexBuild(C,PK): The data owner builds the secure searchable index from the file

collection C. Technologies from IR community like stemming are employed to build

searchable index I from C, and then I is encrypted into I ′ with PK, output the secure

searchable index I ′.

• TrapdoorGen(REQ,PK): The data user generates secure trapdoor from his request

REQ. Vector Tω is built from user’s multi-keyword request REQ and then encrypted

into secure trapdoor T
 with public key from PK, output the secure trapdoor T
.

• ScoreCalculate(T
, I
′): When receives secure trapdoor T
, the cloud server computes

the scores of each files in I ′ with T
 and returns the encrypted result vector ℵ back to

the data user.

• Rank(ℵ,SK,k): The data user decrypts the vector ℵ with secret key SK, and then

requests and gets the files with top-k scores.

14

www.manaraa.com

Note that λ is only involved in Setup algorithm, and the Setup algorithm needs to be

processed only once by the data owner, λ thus is a constant integer for one individual application

instance. The whole framework can be divided into two phases: Initialization andRetrieval .

Initialization phase includes Setup and IndexBuild. Setup stage involves the secure initialization

while IndexBuild stage involves operations on plaintext. For security concern, the vast majority

of work should only be done by the data owner. Moreover, for convenience of retrieve, we modify

the original vector space model by adding each vector vi a head node idi at the first dimension

of vi to store the identifier of fi. In this way, the correspondence between scores and files is

established. The details of Initialization phase are as follows.

Initialization Phase:

1. The data owner calls KeyGen(λ) to generate the secret key SK and public key set PK for

the homomorphic encryption scheme. Then the data owner assigns SK to the authorized data

users.

2. The data owner extracts the collection of l keywords, W={w1, w2, ..., wl}, and their TF and IDF

values out of the collection of n files, C={f1, f2, ..., fn}. For each file fi ∈ C, the data owner

builds a (l + 1)-dimensional vector vi={idi, ti,1, ti,2, ..., ti,l}, where ti,j = tf -idfwj,fi(1 ≤ j ≤ l).

The searchable index I={vi|1 ≤ i ≤ n}.

3. The data owner encrypts the searchable index I to secure searchable index I ′={v′i|1 ≤ i ≤
n}, where v′i={id′i, t′i,1, t′i,2, ..., t′i,l}, id′i=Encrypt(Ri,0, idi) and t′i,j=Encrypt(Ri,j, ti,j) (Ri,0 ⊆
PK,Ri,j ⊆ PK, 1 ≤ j ≤ l).

4. The data owner encrypts C = {f1, f2, ..., fn} into C ′ = {f ′
1, f

′
2, ..., f

′
n} with other cryptology

scheme, then outsources C ′ and I ′ to the cloud server.

Retrieval phase involves TrapdoorGen, ScoreCalculate and Rank, in which the data user

and the cloud server are involved. As a result of the limited computing power on user side, the

computing work should be left to server side as much as possible. Meanwhile, the confidentiality

privacy of sensitive information can not be violated. According to the discussion in Section 3,

the ranking should be left to the user side while the cloud server still does most of the work

without learning any sensitive information. Note that the file vector v′j in I ′ is (l+1)-dimensional

while the request vector is l-dimensional, and the score is the inner product of v′j [1 : l], the later

l-dimensional sub vector of v′j , with the secure trapdoor T
. The details of Retrieval phase are

15

www.manaraa.com

as follows.

Retrieval Phase:

1. The data user generates a set of keywords REQ = {w′
1, w

′
2, ..., w

′
s} to search, and then the query

vector Tω = {m1,m2, ...,ml} is generated in which mi = 1(1 ≤ i ≤ l) if ti ∈ REQ or mi = 0

otherwise. After that, Tω is encrypted into trapdoor T
={c1, c2, ..., cl}, where ci=Encrypt(R,m)

and S ⊆ PK, and then the user sends T
 to the cloud server.

2. For each file vector v′j(0 ≤ j ≤ n) in I ′, the cloud server computes the inner product p′j=v′j[1 :

l] ·T
 with modular reduction, and then compresses and returns the result vector ℵ′={(id′1, p′1),
(id′2, p

′
2), ..., (id

′
n, p

′
n)} to the data user.

3. The data user decrypts ℵ′ into ℵ={(id′1, p1), (id′2, p2), ... ,(id′n, pn)} where pj = Decrypt(SK, p′j),

and then TOPKSELECT(ℵ,k) is invoked to get the top-k highest-scoring files’ identifiers {i1, i2, ..., ik}
then sends it to the cloud server.

4. The cloud server returns the encrypted k files {fi1 , fi2 , ..., fik} to the data user.

As a result of the limited computing power on user side, we concern most about the com-

plexity of ranking. Since the decryption of ℵ can be accomplished in O(n) time, the only

function that could influence the time complexity of ranking is the top-k select algorithm, i.e.,

TOPKSELECT algorithm. The details of TOPKSELECT algorithm are shown in Figure 4(a).

Since the complexity of INSERT algorithm is O(k), as illustrated in Figure 4(b), the overall

complexity of TOPKSELECT algorithm is O(nk). Note that k, which denotes the number

of files that are most relevant to user’s interest, is generally very small compared to the total

number of files. In case of large value of k, the complexity of TOPKSELECT algorithm can be

easily reduced to O(n log k) by introducing a fixed-size min-heap.

5 Discussion

Based on the current research, two issues remain to be addressed in secure multi-keyword top-k

retrieval over encrypted cloud data.

16

www.manaraa.com

(a) (b)

Figure 4: (a) Algorithm TOPKSELECT. (b) Algorithm INSERT.

5.1 Efficiency improvement

The main appeal of the modified FHEI that we employ in the TRSE scheme is its conceptual

simplicity compared to Gentry’s [18]. This simplicity is achieved at the cost of a large key size.

Although optimizations like modular reduction and compression can be employed to reduce the

size of ciphertext, the key size is still too large for practical system.

As discussed in Section 4, the user encrypts his trapdoor and sends the ciphertext to the

cloud server. Therefore, the communication overhead will be very high if the encrypted trapdoor

size is too large. In order to solve this problem and thus improve efficiency, maybe a tradeoff

of the security of search pattern is needed unless a new encryption scheme that provides more

reasonable ciphertext size becomes available. Researchers from cryptography community [29]

[30] have made several attempts to move towards practical fully homomorphic encryption over

integers. These progresses indicate that the efficiency of the TRSE scheme can be further

improved.

5.2 Enable update

In a practical cloud computing system, data update like adding or deleting files leads to a new

challenge to searchable encryption scheme. Since data update may be frequent, e.g., doctors

update patients’ medical records everyday in a medical system and users update their photo

17

www.manaraa.com

albums weekly or even daily, it is necessary to consider the efficiency of update in searchable

encryption design.

In the presence of an update, both the file itself and the searchable index require update

operation. The vector space model employed in the TRSE scheme relies on the tf -idf weight, in

which the inverse document frequency (idf) factor depends on the number of files that contain

a keyword. When a file is added or deleted, the idf factor may change for a keyword. In

order to avoid updating all the searchable index when updates occur, the file vectors should be

independent to each other. Since the searchable index is built for each file, a possible solution

is to only store tf values in file vectors and add another auxiliary vector to store idf values for

each keyword. In this way, update is limited to the auxiliary vector, rather than all searchable

index. The expense is that the tf -idf weights needs to be calculated to get the relevance scores

during each search request. Since the calculation is on the server side and the computing power

on the server side is high, the overall efficiency is almost immune to the update..

6 Security analysis

We evaluate the security of the proposed scheme by analyzing its fulfillment of the security

guarantees of traditional SSE and the privacy requirements discussed in Section 3. First,

the cloud server should not learn either the plaintext of the data files, index and the searched

keywords or their statistic information including access pattern, search pattern and distribution.

Second, the cloud server should not learn the similarity relevance of terms or files so that the

scheme is high robustness. We start with the security analysis of the modified FHEI encryption

scheme. Then we analyze the security of TRSE scheme.

6.1 Security analysis for the modified FHEI scheme

The security of the modified FHEI encryption is equivalent to the hardness of solving the

approximate-gcd problem in Number Theory [22]. Namely, given a set of integers, X =

{x0, x1, ..., xt} where xi = pqi + ri, all randomly chosen close to multiples of a η-bit large

integer p, find this “common near divisor” p. The known attacks on the approximate-gcd prob-

lem includes brute-force attack , the continued fractions attack [20] and Howgrave-

18

www.manaraa.com

Grahams approximate-gcd attack [14]. We evaluate the security of the TRSE scheme

under the three attacks respectively as follows.

The brute-force attack is a natural way to solve normal approximate-gcd problem. The basic

idea is to speculate ri and rj , then check whether the speculation is right with a gcd calculation.

Specifically, when t = 2, for r′1, r
′
2 ∈ (−2ρ, 2ρ), set x′

1 = x1 − r′1, x
′
2 = x2 − r′2, p

′ = gcd(x′
1, x

′
2), if

p′ is a η-bit integer, and then p′ is a possible solution. By brute-force attack, the solution will

certainly be found. The complexity of the attack brute-force is O(22ρ). For arbitrary t > 2,

the complexity grows to O(t322ρ) for checking every pair in X, which is too time-consuming to

implement.

In the continued fractions attack, a sequence of integer pairs is obtained (yi, zi) such that

|x1

x2

− yi
zi
| < 1

z2i
. Since q1

q2
is a good approximation of x1

x2

, i.e., |x1

x2

− q1
q2
| ≈ 0, (q1, q2) probably occurs

in the sequence. If so, p can be recovered by p = [x1

q1
]. The |x1

x2

− q1
q2
| in our scheme, however, is

not small enough to be recovered by this attack. Specifically,

|x1

x2
− q1

q2
| = | q2r1 − q1r2

q2(pq2 + r2)
| ≈ |q2r1 − q1r2

p
| · 1

q22
,

since | q2r1−q1r2
p

| � 1 according to the parameter selection in our scheme, the pair (q1, q2) can

not be obtained in the sequence. Therefore, the continued fractions attack does not impair our

scheme.

Howgrave-Graham gives a lattice attack on the multi-element approximate-gcd problem.

In this attack, when t = 2, the relevant lattice may contain exponential vectors unrelated to

the approximate-gcd solution, so that lattice reduction turns out to be in vain. For arbitrary

t > 2, the time needed to guarantee a 2η approximation is roughly 2
γ

η2 , resulting the overall

computing complexity is Ω(2λ), which is difficult to crack. In conclusion, the modified FHEI

scheme guarantees sufficient security.

6.2 Security analysis for TRSE scheme

Compared to the traditional SSE, our TRSE scheme reduces the information leakage asymp-

totically equal to zero. First, for access pattern and search pattern, e.g., if the same keyword

ti is requested in two queries REQ1 and REQ2, then m1i = m2i = 1 in the corresponding

query vector Tω1 and Tω2. After that, m1i and m2i are encrypted into different ciphertext

19

www.manaraa.com

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

10

20

30

40

50

60

n
u
m

b
e
r

o
f

te
rm

s

before FHEI

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
similarity relevance with "resources"

0

10

20

30

40

50

60

n
u
m

b
e
r

o
f

te
rm

s

after FHEI

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00
5

10
15
20
25
30
35
40

n
u
m

b
e
r

o
f

te
rm

s

before FHEI

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
similarity relevance with "data"

0

10

20

30

40

50

60

n
u
m

b
e
r

o
f

te
rm

s

after FHEI

(a) (b)

Figure 5: Distribution of similarity relevance of (a) 218 terms with “resources” before and

after FHEI in the NSF file set. (b) 142 terms with “data” before and after FHEI in the 20

Newsgroups data set.

by employing Encrypt(R1i, m1i) and Encrypt(R2i, m2i). Namely, as well as same keywords in

different queries, the encryptions of different keywords in same queries are independent, i.e.,

which keywords have been retrieved are concealed, thus access pattern and search pattern are

secure.

Second, since the modified FHEI encryption requires no order-preserving property, the scores

in the secure searchable index I ′ are encrypted into random intervals according to the randomly

selected subset of PK. For a keyword ti, a term vector, vi = {fi1, fi2, ..., fin}, can be deduced

from I ′ where the fij denotes ti’s encrypted tf -idf weighting on file fi. As stated in Section

2, the tf -idf weighting represents the TF and IDF values directly, which are specific not only

in value but also in distribution. After FHEI encryption, vi changes into v′i = {f ′
i1, f

′
i2, ..., f

′
in},

and the original order are totally disrupted. Since the inter distribution is similar to the issue

of term distribution, both the term distribution and the inter distribution are secure.

Third, the random mapping disrupts the original order of the files in FS, thus the common

subsequence of two terms is randomly disrupted. Thus, the resulting similarity relevance can

not be retained after FHEI encryption. As shown in Figure 5(a), the distribution of similarity

relevance of “resources” with other 218 terms is flattened after FHEI encryption, e.g., only 2

terms are relevant with “resources” before FHEI while 42 terms can be considered as relevant

after FHEI (set κ0 = 0.8). The comparative experiment on the 20 Newsgroups data set also

demonstrates the similar conclusion, e.g., only 1 term is relevant with “data” before FHEI while

27 terms can be considered as relevant after FHEI, which is shown in Figure 5(b). Generally

speaking, as Table 2 shows, the κ value randomly changes, e.g., the κ value of “human” changes

20

www.manaraa.com

Table 2: Similarity relevance with “resources” before and after FHEI.

term len κ len′ κ′

directorate 264 0.023 3248 0.283

education 4826 0.544 6273 0.707

human 7648 0.885 711 0.082

provide 1014 0.098 1132 0.109

sciences 2480 0.226 45 0.004

from 0.885 to 0.085, while the κ value of “directorate” changes from 0.023 to 0.283. In other

words, which term is more relevant to “resources” than other terms is concealed. As a result

of the flattening of similarity relevance, our scheme robustness reaches the theoretical upper

bound: � = min{ p(ζ)
p(ζ|τ)

} = min{p(ζ)
p(ζ)

} = 1.

In general, the TRSE scheme we proposed is adequate to overcome the inevitable compro-

mise of security caused by the order-perserving encryption based traditional server-side ranking

SSE schemes. Specifically, TRSE conceals the similarity relevance and retains scheme robust-

ness. Therefore, the TRSE scheme guarantees high data privacy.

7 Performance analysis

We conducted a thorough experimental evaluation of the proposed TRSE scheme on the file

set of NSF Research Awards Abstracts 1990-2003 [15]. Our experiment environment includes

a user and a server. The user uses C language on a Windows 7 machine with Core 2 Duo CPU

running at 2.0GHz, and the server uses C language on a linux machine with Xeon E5620 CPU

running at 2.4GHz. The user acts as a data owner and a data user, and the server acts as a

cloud server.

7.1 Performance of Initialization phase

Initialization phase includes Setup and IndexBuild, and needs to be processed only once by the

data owner. According to the parameter selection in the modified FHEI scheme, the complexity

of Setup stage is O(λ10). Note that λ is a fixed integer for a realistic scheme, e.g., λ = 128 in

21

www.manaraa.com

500 1000 1500 2000 2500 3000 3500 4000
number of keywords

0

100

200

300

400

500

ti
m

e
 (

m
s
)

TRSE

SSE

500 1000 1500 2000 2500 3000 3500 4000
number of queried keywords

0

100

200

300

400

500

ti
m

e
 (

m
s
)

TRSE

SSE

(a) (b)

Figure 6: (a) The time to generate trapdoor on different scale of keyword sets. (b) The time

to generate trapdoor for different number of queried keywords, the number of keywords in the

keyword set is l = 4000.

our experiment, so the setup stage costs a fixed time.

IndexBuild stage includes building searchable index I and then encrypt I into I ′. In order to

build I, several technologies from information retrieval community, e.g., stemming for reducing

inflected words to their root words, can be employed to improve efficiency, which is not in the

scope of this paper. In order to improve the computing efficiency, the tf -idf values are rounded

to integers when building I, which does not affect the retrieve accuracy. Note that encryption

needs only addition operation, so the complexity of encrypting I is O(nl), where n denotes the

number of files and l denotes the number of keywords.

7.2 Performance of the retrieval phase

Retrieval phase includes TrapdoorGen, ScoreCalculate and Rank. The Rank stage can be

subdivided into ResultDecrypt and TopK. Since the Initialization phase needs to be processed

only once and the Retrieval phase can be processed many times, the overall efficiency is thus

dominated by the Retrieval phase, and we compared the efficiency of this phase between our

approach with a server-side ranking SSE approach adopted from [25]. As our approach employed

two-round communication, which is different from any server-side ranking SSE schemes, there

are only two shared stages including TrapdoorGen and ScoreCalculate that we can take for

comparison.

The TrapdoorGen stage needs O(l) time to build the l-dimension query vector Tω from the

multi-keyword request. In order to encrypt Tω to T
, each dimension needs to be encrypted.

22

www.manaraa.com

500 1000 1500 2000 2500 3000 3500 4000

number of files

0

2

4

6

8

10

ti
m

e
 (

s
)

TRSE

SSE

500 1000 1500 2000 2500 3000 3500 4000
number of queried keywords

0

2

4

6

8

10

ti
m

e
 (

s
)

TRSE

SSE

(a) (b)

Figure 7: (a) The time to calculate scores on different scale of file sets, the number of keywords

in the keyword set is 1000. (b) The time to calculate scores for different number of queried

keywords, here the number of files in the file set is n = 4000.

Since the encryption requires only addition operations, the complexity of this stage is O(l).

Figure 6(a) shows the time cost to generate a trapdoor of different lengths. For example, it

costs 88ms to generate a trapdoor over a file set containing 4000 different keywords with TRSE,

while the SSE scheme needs 223ms to do the same work. The comparative experiment data

on the SSE scheme shows that our scheme is more efficient in this stage. Specifically, TRSE

reduces the time cost from a exponential growth down to a linear growth against the increment

of keyword set size. Besides, the length of query vector is fixed to l, so the time to generate

trapdoor is changeless when the number of queried keywords increases. Specifically, TRSE

costs about half of the time of the SSE scheme in this stage when the number of keywords in

the keyword set is l = 4000, as illustrated in Figure 6(b).

In ScoreCalculate stage, the cloud server calculates the inner product of T
 with each row

in I ′. To calculates the inner product, each row needs l multiplications and l-1 additions.

Therefore, the complexity of scoreCalculate is O(nl). Figure 7(a) shows the time cost to

calculate scores on different scale of file set. For example, it costs 4.5s to calculate scores

on a file set of 4000 files and 1000 keywords, while the SSE scheme needs 4.9s to do the same

work. In fact, the comparative experiment data on the SSE scheme shows that our scheme

reduces the time cost from a exponential growth down to a linear growth against the increment

of file set size. Since the scale of the calculation is fixed to the scale of the file set, the time

cost is changeless when the number of queried keywords increases. Specifically, TRSE performs

better than the SSE scheme after the size of file set grows beyond 3500, which is shown in

Figure 7(b). Moreover, the difference of computing power between server side and user side can

be much greater than that in our experimental environment in general, so the time to calculate

23

www.manaraa.com

500 1000 1500 2000 2500 3000 3500 4000

number of files

0

2

4

6

8

10

ti
m

e
 (

s
)

500 1000 1500 2000 2500 3000 3500 4000
number of queried keywords

0.86

0.88

0.90

0.92

0.94

0.96

ti
m

e
 (

s
)

(a) (b)

Figure 8: (a) The time to decrypt the result vector on different scale of file sets. (b) The time

to decrypt the result vector for different number of queried keywords, the number of files in the

file set is n = 500.

scores can probably be further reduced in practice.

In ResultDecrypt stage, the data user decrypts the n-dimension result vector to get the

plaintext of the scores. Since the size of the result vector depends only on the number of

files in the file set and the decryption of each dimension costs constant number of modular

computations, the overall complexity of decryption is O(n). Figure 8(a) shows the time cost to

decrypt the result vector on different scale of file set when k = 50. For example, it costs 0.905s

to decrypt the result vector on a file set of 500 files, while 2.106s for 1000 files. Similar to the

pervious two stages, the number of query keywords does not influence the time cost either, as

shown in Figure 8(b).

In TopK stage, the data user goes over the decrypted result to get the top-k highest-scoring

files’ identifers. Figure 9(a) shows the time cost to select the top-k files’ identifiers on different

scale of file set by TOPKSELECT algorithm. For example, it costs 0.108ms to select the

top-100 files’ identifiers from a file set of 500 files, while 2.188ms for top-500 from 2000 files.

Although the time cost is low, there is still room for reduction in case of large k. As discussed

in Section 4.2, the complexity of top-k selection algorithm can be easily modified to O(n log k)

by introducing a fixed-size min-heap. Figure 9(b) demonstrates that the time cost of this stage

is independent to the number of queried keywords. From the experimental data, we can see

that the decryption is more time consuming than the time cost of top-k selection. Since the

increment of k affects only the time cost of topK stage, which accounts for only a small fraction

of the overall time cost, its impact on the overall time cost of Retrieval phase is negligible.

Although the two round communication subdivides the Retrieval phase with two additional

24

www.manaraa.com

500 1000 1500 2000 2500 3000 3500 4000

number of files

0

1

2

3

4

5

ti
m

e
 (

m
s
)

k=100

k=300

k=500

500 1000 1500 2000 2500 3000 3500 4000
number of queried keywords

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ti
m

e
 (

m
s
)

k=100

k=300

k=500

(a) (b)

Figure 9: (a) The time to select the top-k files’ identifiers on different scale of file sets. (b) The

time to select the top-k files’ identifiers for different number of queried keywords, the number

of files in the file set is n = 500.

stages and thus introduces extra overhead, our approach still guarantees practical efficiency

while scheme robustness and security are significantly improved. Specifically, the scale of com-

puting on user side is smaller than that on server side, i.e., the majority of computing is done by

the cloud server. Moreover, as previously discussed, the increased number of query keywords

does not degrade performance of Retrieval phase, which introduces the TRSE scheme good

scalability.

7.3 Communication overhead

According to Section 4.1, binary addition and multiplication operations involve in TRSE

scheme. The size of ciphertext doubles after multiplication. In order to further downsize

the ciphertext and reduce the communication overhead, we apply a couple of optimizations in

TRSE scheme. During Evaluate stage, modular-reduction [11] can help to keep the size of eval-

uated ciphertexts at the same length as original ciphertexts by executing a sequence of modular

reductions when the size of ciphertexts grows beyond 2λ. Even though modular-reduction is

employed, however, the size of ciphertexts is still very large, e.g., Θ(λ5) bits under suggested

parameters. It can be further shrunk to the size of a RSA modulus [21] by ciphertext compres-

sion, e.g., 1024 bits for one dimension, reducing the communication complexity of our scheme

dramatically.

The tf -idf values are less than 1000 in our experimented file set, so 10 bits are enough for

each dimension of file vector in I. The size of ciphertext grows to 1024÷10 = 102.4 times of the

original size. For example, if considering a file set of 500 files and 1000 distinct keywords, then

25

www.manaraa.com

the size of one encrypted result that need to be sent back to the user is 500 × 1024bit = 62.5

KB. Taking into account the data transfer rate of widely used Internet, e.g., 800 KB/s, the

communication can be done within 78.125 ms. In traditional user-side ranking SSE approaches,

in which the cloud server needs to return the entire searchable index to the user, a index size

of about 500 × 1000 × 1024bit ≈ 61 MB needs to be transferred and then all the scores are

calculated on user side. Compared with that, TRSE vastly reduces the communication overhead

and the computing burden on user side.

8 Related work

Traditional searchable encryption are investigated in [8][22][23] focusing on security definitions

and encryption efficiency and these work support only boolean keyword retrieval without rank-

ing. A. Swaminathan et al. [24] explored secure rank-ordered retrieval with improved searchable

encryption in the scenario of data center. They built a framework for privacy-preserving top-

k retrieval, including secure indexing and ranking with order preserving encryption (OPE).

S. Zerr et al. [10] proposed a ranking model to guarantee privacy-preserving document ex-

change among collaboration groups, which allows for privacy-preserving top-k retrieval from an

outsourced inverted index; They proposed a relevance score transformation function to make

relevance scores of different terms indistinguishable and such that improves the security of the

indexed data. C. Wang and colleagues [9] explored top-k retrieval over encrypted data in cloud

computing. On the base of searchable symmetric encryption (SSE), they proposed the one-to-

many order-preserving mapping to further improve the efficiency while security guarantee and

retrieval accuracy are slightly weakened. However, these schemes support only single keyword

retrieval.

Considering the large number of data users and documents in the cloud, it is necessary

to allow multi-keyword in the search request and return the most relevant documents in the

order of their relevancy with these keywords. Some exsiting works [27][28] proposed several

schemes supporting boolean multi-keyword retrieval. N. Cao et al. [25] made the first attempt

to define and solve the problem of top-k multi-keyword retrieval over encrypted cloud data.

They employed coordinate matching and inner product similarity to measure and evaluate the

relevance scoring. H. Hu et al. [26] employed homomorphism to preserve the data privacy.

26

www.manaraa.com

They devised a secure protocol for processing k-nearest-neighbor (kNN) index query and thus

both the data privacy of the owner and the query privacy of the client are preserved. These

two schemes employed boolean representation in their searchable index, i.e., 1 denotes the

corresponding term exists in the file and 0 otherwise. Thus, files that share queried keywords

have the same score, a situation that is far from precise thus weakens the effectiveness of

data utilization. Since all these server-side schemes employ server-side ranking based on order-

preserving encryption, the security is compromised. We therefore focus on the security, an issue

the above schemes fail to address.

9 Conclusion

In this paper, we motivate and solve the problem of secure multi-keyword top-k retrieval over

encrypted cloud data. we define similarity relevance and scheme robustness. Based on order-

preserving encryption invisibly leak sensitive information, we devise a server-side ranking SSE

scheme. We then propose a two-round searchable encryption (TRSE) scheme employing the

fully homomorphic encryption, which fulfills the security requirements of multi-keyword top-

k retrieval over the encrypted cloud data. By security analysis, we show that the proposed

scheme guarantees data privacy. According to the efficiency evaluation of the proposed scheme

over real dataset, extensive experimental results demonstrate that our scheme ensures practical

efficiency.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, and M. Zaharia. “A view of cloud computing,” Communication of the ACM 53

(4): 50 58, 2010.

[2] M. Arrington, “Gmail disaster: Reports of mass email deletions,”

http://www.techcrunch.com/2006/12/28/gmail-disasterreports-of-mass-email-deletions/,

December 2006.

27

www.manaraa.com

[3] Amazon.com, “Amazon s3 availability event: July 20, 2008,”

http://status.aws.amazon.com/s3-20080720.html, 2008.

[4] RAWA News, “Massive information leak shakes Washington over Afghan war,”

http://www.rawa.org/temp/runews/2010/08/20/massive-information-leak-shakes-

washington-over-afghan-war.html, 2010

[5] AHN, “Romney hits Obama for security information leakage,”

http://gantdaily.com/2012/07/25/romney-hits-obama-for-security-information-leakage/,

2012

[6] Cloud Security Alliance, “Top threats to cloud computing,” http://www.cloudsecurity al-

liance.org, 2010.

[7] C. Leslie, “NSA has massive database of Americans’ phone calls,”

http://usatoday30.usatoday.com/news/washington/2006-05-10/.

[8] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption:

improved definitions and efficient constructions,” in Proc. of ACM CCS, 2006.

[9] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword search over encrypted

cloud data,” in Proc. of ICDCS, 2010.

[10] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski, “Zerber+r: Top-k retrieval from a

confidential index,” in Proc. of EDBT, 2009.

[11] M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan, “Fully Homomorphic Encryption

over the Integers,” in Gilbert, H. (ed.) EUROCRYPT. LNCS, vol. 6110, pp. 24-43, 2010.

[12] M. Perc, “Evolution of the most common English words and phrases over the centuries,”

the Journal of the Royal Society Interface, 2012. / mec/2003-2004/.

[13] O. Regev, “New lattice-based cryptographic constructions,” JACM 51(6), pp. 899-942, 2004.

[14] N. Howgrave-Graham, “Approximate integer common divisors,” in Silverman, J.H. (ed.)

CaLC’ 01. LNCS, vol. 2146, pp. 51-66, 2001.

[15] NSF Research Awards Abstracts 1990-2003: http://kdd.ics.uci.edu/databases/nsfabs /ns-

fawards.html.

28

www.manaraa.com

[16] 20 Newsgroups: http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.

[17] S. Gries, “Useful statistics for corpus linguistics,” in Aquilino Sanchez Moises Almela

(eds.), A mosaic of corpus linguistics: selected approaches, 269-291. Frankfurt am Main:

Peter Lang, 2010.

[18] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of STOC, pp.169-

178. ACM, New York, 2009.

[19] D. Dubin, “The Most Influential Paper Gerard Salton Never Wrote,” LIBRARY TRENDS,

Vol. 52, No. 4, pp. 748-764, 2004.

[20] A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland and W.B. Jones, “Handbook of

Continued fractions for Special functions,” Springer Verlag, 2008.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to Algorithms,” MIT

Press and McGraw-Hill. pp. 856-887. 2001.

[22] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,”

in Proc. of IEEE Symposium on Security and Privacy, 2000.

[23] D. Boneh, G. Crescenzo, R. Ostrovsky and G. Persiano, “Public-key encryption with key-

word Search,” in Proc. of Eurocrypt, 2004.

[24] A. Swaminathan, Y. Mao, G.-M. Su, H. Gou, A. L. Varna, S. He, M. Wu, and D. W.

Oard, “Confidentiality-preserving rank-ordered search,” in Proc. of the Workshop on Storage

Security and Survivability, 2007.

[25] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multikeyword ranked

search over encrypted cloud data,” in Proc. of IEEE INFOCOM, 2011.

[26] H. Hu, J. Xu, C. Ren and B. Choi, “Processing private queries over untrusted data cloud

through privacy homomorphism,” in Proc. of ICDE, 2011.

[27] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over encrypted

data,” in Proc. of ACNS, pp. 31-45, 2004.

[28] L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient conjunctive keyword searches

over encrypted data,” in Proc. of ICICS, 2005.

29

www.manaraa.com

[29] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully Homomorphic Encryption

over the Integers with Shorter Public Keys,” in Proc. of CRYPTO, 2011.

[30] N. Smart, F. Vercauteren, “Fully homomorphic encryption with relatively small key and

ciphertext sizes,” in Proc. of PKC, 2010.

Jiadi Yu is an Assistant Professor in Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, China. He obtained the PhD degree in Computer

Science from Shanghai Jiao Tong University, Shanghai, China, in 2007 In the past, he has

worked as a postdoc at Stevens Institute of Technology, USA, from 2009 to 2011. His

research interests include networking, mobile computing, cloud computing and wireless sensor

networks. He is a member of the IEEE and the IEEE Computer Society.

Peng Lu received the bachelor degree in software engineering from Huzhong University of

Science and Technology (HUST), Wuhan, China, in 2011. He is a master in Department of

Computer Science and Engineering, Shanghai Jiao Tong University. His research interests

include cloud computing and mobile computing.

Yanmin Zhu is an Associate Professor with the Department of Computer Science and

Engineering at Shanghai Jiao Tong University. His research interests include wireless sensor

networks and mobile computing. He obtained his PhD from the Department of Computer

Science and Engineering at the Hong Kong University of Science and Technology in 2007.

Before that, he was a Research Associate with the Department of Computing at Imperial

College London. He is a member of the IEEE and the IEEE Communication Society.

Guangtao Xue received his Ph.D. in Computer Science from Shanghai Jiao Tong University

in 2004. He is an associate professor in the Department of Computer Science and Engineering

at the Shanghai Jiao Tong University. His research interests include mobile networks, social

networks, sensor networks, vehicular networks and distributed computing. He is a member

of the IEEE Computer Society and the Communication Society.

Minglu Li graduated from the School of Electronic Technology, University of Information

Engineering, in 1985 and received the PhD degree in computer software from Shanghai Jiao

Tong University (SJTU) in 1996. He is a full professor and the vice chair of the Department

of Computer Science and Engineering and the director of Grid Computing Center of SJTU.

Currently, his research interests include grid computing, services computing, and sensor

networks.

30

